PHYSICAL REVIEW E

VOLUME 52, NUMBER 3

SEPTEMBER 1995

Dynamic correlations in a dense dipolar liquid

J. Dawidowski,! A. Chahid,? F. J. Bermejo,! E. Enciso,® and N. G. Almarza®
! Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, E-28006 Madrid, Spain
2 Departamento de Fisica de Materiales, Universidad del Pais Vasco, P.O. Boz 1072, E-20080 San Sebastidn, Spain
3 Departamento de Quimica-Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense,
Ciudad Universitaria, E-28040 Madrid, Spain
(Received 6 April 1995)

The microscopic dynamics of liquid sulphur dioxide is investigated by means of the concurrent use
of inelastic neutron scattering and molecular dynamics simulations. This enables an approximate
separation of the dynamic processes contributing to the neutron spectra, thus allowing us to quantify
the deviation from idealized behavior of quantities characterizing the single-particle and collective
motions. From a comparison between experiment and simulation, an estimate of an inelastic struc-
ture factor comprising information about the extent of orientational correlations is derived. Finally,
the relevance of the present results as benchmarks to assess recent predictions is discussed.

PACS number(s): 61.25.Em, 71.20.Fi, 61.20.Lc

I. INTRODUCTION

Because of the highly directional nature of the inter-
particle interactions, the dynamical response of a dense
dipolar fluid is expected to exhibit properties remark-
ably different from simple (i.e., Lennard-Jones) liquids.
Particularly appealing were the suggestions of Lobo et
al. [1] and Pollock and Alder [2], stating the existence
of collective oscillations in the longitudinal component of
the polarization function, termed dipolarons thereinafter,
in analogy with the plasma oscillations in Coulomb sys-
tems. Such excitations were found to be the origin of
the strong dynamic correlations between dipolar parti-
cles [3], as they also have a remarkable role in explaining
some anomalies in the shear or rotational viscosities of
such a class of fluids [4]. Although the theoretical con-
structs dealing with microscopic scales still show some
consistency problems (i.e., the continuum limit of those
approaches is in some cases lacking, although attempts
within the framework of extended irreversible thermo-
dynamics [4] seem to provide a way of linking these ef-
forts with the more elaborate macroscopic treatments;
see Ref. [5] as an example), the fact that some computer
molecular dynamics results in point dipoles or calcula-
tions for realistic systems [6] have proven the existence of
such oscillations [2] has led to a number of efforts trying
to detect such phenomena in real systems [7]. The ex-
perimental verification of such predictions has, however,
encountered a number of difficulties as a consequence of
the need to fulfill some stringent conditions regarding the
microscopic time scales adequate for the appearance of
non-over-damped responses in the longitudinal compo-
nent of the €(Q,w) dielectric tensor. However, because
the coupling between polarization fluctuations and hy-
drodynamic modes provides effective channels for the dis-
sipation of dielectric energy, it is expected that a number
of microscopic properties of these fluids, especially those
related to hydrodynamic flow (viscosities) and angular
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velocity (single-particle rotations), will also show some
anomalous behavior.

A number of attempts to explore the extent of orienta-
tional correlations in liquids formed by particles carrying
permanent dipole moments have also appeared in recent
times [8]. In particular, some recent findings regarding a
somewhat more realistic fluid, formed by particles inter-
acting via dipolar and dispersion forces [9], has reported
the existence of a variety of critical phenomena depend-
ing upon the particle aspect ratio. Even if such findings
are only qualitative, due to the oversimplified form of
representing realistic molecular interactions, some of the
predictions already made, such as the presence of long-
ranged correlations of molecular orientations, seem worth
contrasting against experimental or simulational data.

The purpose of the present work is thus to provide
an assessment of the nonideal behavior of several mi-
croscopic dynamical quantities on a real fluid, sulphur
dioxide, by means of the study of the stochastic (low-
frequency) motions as sampled by quasielastic neutron
scattering (QENS) measurements. Because of the limited
information directly available from the QENS spectra of
classical liquids, the analysis of the experimental intensi-
ties has been carried out by recourse to functions calcu-
lated by means of computer molecular dynamics simula-
tions, which has enabled the derivation of extremely use-
ful microscopic information hardly available from other
means. As described below, the computer simulation re-
sults will serve to separate the different atomic motions
contributing to the experimental spectra and constitute
a benchmark that allows one to overcome some inadequa-
cies of the simulation results. The choice of such a liquid
was motivated by its simple structure (i.e., far more sim-
ple than other liquids recently examined such as liquid
water [6]), which allows simulations to be carried on re-
alistic model potentials, and easiness of handling, as well
as by the amount of information already available con-
cerning static correlations [10], collective dynamics [11],
and elastic properties [12].
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II. EXPERIMENTAL
AND COMPUTATIONAL DETAILS

The neutron experiment was performed on the IN6
spectrometer located at the Institut Laue Langevin (ILL)
(Grenoble, France). The cylindrical cell (10 mm diame-
ter, 50 mm height) was filled with the liquid under sat-
urated vapor pressure. In order to reduce the contri-
bution of the multiply scattered neutrons, the cell con-
tained five cadmium spacers 0.3 mm thick placed par-
allel to the beam direction. The sample was measured
at temperatures of 190, 210, and 230 K and the trans-
mission geometry (o = 135°) was employed. We used
an incident wavelength of 4.1 A, corresponding to an en-
ergy of about 4.87 meV and the resolution was better
than 0.1 meV. The spectra were corrected by standard
ILL programs for detector efficiency, sample container,
absorption, and self-shielding. The dynamical structure
factor S(Q,w) was then converted to constant Q with
the INGRID computer code. In agreement with previous
findings regarding the microscopic structure of the fluid,
the main differences between data sets corresponding to
different temperatures could easily be explained in terms
of the concomitant change in density, so that the ensuing
discussion will only concern one thermodynamic state. A
set of spectra taken at different values of the momentum
transfer is shown in Fig. 1.

Molecular dynamics simulations on the system at sev-
eral temperatures were performed, although only data at
230 K will be discussed for reasons mentioned above. In
each run a cubic simulation cell containing 256 molecules
has been used. The equations of motion have been solved
by applying the Gear predictor-corrector method. The
integration time step was 107!% s and a typical run was
about 30000 time steps giving a simulation length of
30ps. This has been done to ensure that the incoher-
ent intermediate function vanishes at long times. The
intermolecular potential used was a three-site Lennard-
Jones model with electric point charges that corresponds
to the thermodynamic state 4 of model C proposed by
Sokoli¢ et al. [13]. The relevant parameters regarding
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FIG. 1. Experimental, constant-Q spectra for different

values of the momentum transfer given in the inset.
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TABLE I. Thermodynamic and potential energy parame-
ters for the molecular dynamics simulation. L stands for the
side of the simulation box, da—g are the bond lengths, Tcutos
represents the cutoff radius for the electrostatic interactions,
and the rest of the symbols retain their usual meaning. Elec-
trostatic point charges g; are expressed in units of the electron
charge.

Parameter Value
T (K) 230
p (Kg/m?) 1.541 x103
L (&) 26.05
ds—o (R) 1.434
do-o (&) 2.47
Tcutoff (A) 13
gs (e) 0.47
qo (e) -0.235
os—s (A) 3.610
go-o (A) 3.000
es_s/kB (K) 146
co—o/ks (K) 57.5

the interaction forces are summarized in Table I, and the
charge interactions were handled by means of the stan-
dard Ewald summation procedure.

Some computations regarding static quantities were
also carried out by means of a Monte Carlo code [14].
For this calculation a cubic simulation cell, with sides
of 27.75 A, containing 256 molecules interacting through
the potential described in Table I was used. The poten-
tial was truncated using a cutoff radius of 10 A. The to-
tal number of steps was of 1600000 from which 800000
corresponded to translational motion (256 156 were ac-
cepted) and 800 000 to rotations (292 757 accepted). The
same thermodynamic states explored in a previous work
[10], that is, temperatures of 190, 210, and 230 K, were
simulated.

III. RESULTS
The complete double differential scattering cross sec-
tion can be written
dc k1 [
dQdw ~ ko 2w J_

e~ ¢(Q,t) dt, (1)

in which the intermediate scattering function o(Q,t) can
be separated in inter- and intramolecular parts and the
wave vector expressed in terms of its modulus due to the
isotropy condition

o(@,t) = 14(Q,1t) F2(Q) + L(Q,t) v(Q,1). (2)
The position of the vth nucleus in the jth molecule can
be written as

Rj, = R; + rj, (3)
where R; is the jth molecule’s position of the center of
mass and rj, is the position of atom v in molecule j with

respect to its center of mass.
As usual, we define the distinct and self-parts of the
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intermediate scattering function as

I;(Q,t) = Z <e—iQ~R.-(0) e‘iQ-Rj(t)> ()
i
and
L@t =) <e—icz-n.~(0) IR, (t)> , 5)

k3
respectively. The term F3(Q) appearing in Eq. (2) is
an intermolecular form factor, which obviously depends
upon the correlation of the molecular orientations [15]
and can be written in general terms as

F(Q) = <Z bmbujeiq'(r"j_r"i)> . (6)
HiVj
Notice that the quantity given above contains relevant
physical information from which estimates of a corre-
lation length could be derived. Finally, the function
v(Q,t) encompasses the molecular, single-particle reori-
entational motions and can be expressed as a partial-
wave expansion [16]

w(@1) =3 u(@) Fu(t), )
=0
v(Q)= (21 +1) Z (bu,conby,con + bi,inc‘suu)
% 1(Qry) 31(Qry) Pilcos(8,u)] ®)

in which Fj(t) are the rotational relaxation functions, 7
are the spherical Bessel functions, P; are the Legendre
polynomials, and 8,,,, is the angle between vectors r;, and
rj,. The subscripts “coh” and “inc” denote the coher-
ent and incoherent scattering lengths, respectively. The
latter functions will thus contain all the relevant dynam-
ics regarding stochastic molecular rotations; one of the
main objectives of the present simulation was to explore
the extent of departure of such functions from idealized
Debye behavior (i.e., simple exponential relaxation).

In the limit of low-Q values it is sufficient to consider
only up to the term [=2 in the above expansion (cf.
Ref. [16]). In the rest of this work we will neglect the
higher-order terms.

Each one of these components, i.e., I4(Q,t),
I,(Q,t),v(Q,t), and Fi(t), was modeled on the basis of
those correlation functions calculated by means of molec-
ular dynamics simulations. The modeling was performed
on the Q-w space, i.e., the time Fourier transform of the
above shown quantities, and the most relevant details are
given below.

A. Self-scattering law

Attempts to describe the self-component I,(Q,t) with
a simplified function failed, as none of the feasible forms
of joining the short-time, basically Gaussian, behavior
and long time (diffusional) regimes was found to repro-
duce the calculated functions. The latter showed a typi-
cal exponential decay with a clear quadratic dependence
on the wave vector, while at short times a free transla-
tion regime dominated. To interpolate between these two
regimes we adopted a three-pole formula [17], which has
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proven to be an adequate means of describing the time
Fourier transform Sgeif(Q,w) while preserving the second
and fourth moments of the dynamical structure factor for
single-particle motions. The self, dynamic structure fac-
tor thus reads

Tw§ (wg — wi)

[wr(w? — w2)]? + [(w? — w}))*’

Seetf(Q, w) = (9)

where the relaxation time is evaluated following a simple
approximation, which leads to

=2l 1 (10)

mDQo /w2 — w2

Qo represents some vibration frequency of a molecule in
the liquid if the rest is maintained at its equilibrium po-
sition [18]

2 _ 2 2
Q5 = wy — 3wy

(11)

and wo and w, are related to the reduced second and
fourth frequency moments of the scattering function as

|

2 = (w?) = Q?

“o Mmolﬁ ’ (12)

G
s <w2> ’ (13)
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FIG. 2. Self-scattering function from simulation (circles),

compared with the fitted three-pole model, for two different
Q values.
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with 8 = 1/kgT and My, being a molecular mass.
A good fit between the simulation and this model was
achieved (as shown in Fig. 2 for three different Q val-
ues), although a rather small value for the self-diffusion
constant was observed (0.8 x 107° m%s~!). The reasons
for this are both the small size of the simulation box em-
ployed, which cannot take account of the large distances
implied in the diffusional regime, as well as possible inad-
equacies of the interparticle potential. An estimate of the
translational diffusion coefficient of the liquid was, on the
other hand, obtained from a Lorentzian fit over the low-
Q values of the experimental spectra (0.24-0.66 A~1),
which gave the value 4.45 x 107° m2s~? for the diffusion
constant, which was adopted in the further analysis. The
reason for the failure of any simple model to account for
the spectral shape can be gauged from the values of the
parameter [19]

e

T 3(w?)?

1, (14)

which is zero for a Gaussian form and infinite for a
Lorentzian form. In Fig. 3 we show the o values for differ-
ent Q’s and a transition between the Lorentzian (Fick-
ian diffusion) regime and a Gaussian can be observed at
Q~05 A1 although full Gaussian behavior seems to
be confined to wave vectors above 2 A~l. Within the
inset of the same figure, we show the fitted values for wg
and w;. The slope of wg versus wave vector gives a value
for the effective mass for single-particle motion, which
turns out to be approximately equal to 101 amu, which
is about 1.57 times the mass of the isolated molecule, and
the estimated Q¢ characteristic frequency approximately
equal to 3 meV, a value difficult to correlate with any
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B. Rotational relaxation functions

Since the orientational correlations are supposed to be
strong, it can be expected that the rotational motion
of the SO, molecule substantially deviates from simple
(small step) diffusional movement. In fact, as shown by
Wasylishen et al. [21] in a 33S and 7O NMR study, such
a departure is expected to occur since the free-rotational
time is of the same order as the mean time between col-
lisions. For this reason a simple exponential behavior
cannot describe the rotational relaxation functions. In
order to account for this, several different possibilities
were explored. From those, the most adequate model to
describe the rotational relaxation functions was that due
to Larsson and Bergstedt [22], in which it is supposed
that the molecule exists in two phases of rotational mo-
tion: either free rotation during an average time 7 or
rotational diffusion during time 73. The corresponding
equations for Fi(t) in these two states are, respectively,’

Firee(t) = exp [-z(z + 1)%- t2] , (15)
Fi an(t) = exp[-l(l+1)Dr|t]], (16)

where I is the average moment of inertia of the molecule
and Dp is the rotational diffusion constant.
The relevant quantities to compare with the simula-
tions are the Fourier transforms
1 oo
Si(w) = ;/ Fi(t) cos wtdt, 17)
0
where the condition F;(0) = 1 implies that the integral
of Si(w) must be unity. The resulting expression is thus

distinct'ive feature appefa,rir%g ix% the experi.menf,al Z(w) H Aty + Bty + 2AB
generalized frequency distribution shown in Fig. 3a of Si(w) = Py <5 , (18)
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TABLE II. Parameters describing the rotational relax-
ation functions (see the text).

Parameter | Si(w) | Sz(w)
7o (ps) 1.08 1.44
71 (ps) 1.24 0.77

Dr (ps)~! 0.18 0.17

I (amu A?) 16.08 17.02

where H is a normalization constant and

A = In ex _I(7'0_2+w2)
"SA G T DksT TP T A0 + D)ksT

Iw
200 + 1)kBTTO] ’ (19)

2[4+ 1)Dgr + 711]
"T w2 4+ I(l+1)Dg + 1

The fits were performed over simulation data corre-
sponding to S;(w) and Sz(w), at 230 K with the param-
eter set 79, 71, Dgr, H, and I, and some representative
results are summarized in Table II. Notice that the resi-
dence time in both rotational states is in agreement with
the previous estimation that they are of the same order
of magnitude [21].
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FIG. 4. Fourier transforms of the first two rotational re-
laxation functions obtained from the simulation (dots), com-
pared with Larsson’s model.

In Fig. 4 we show the simulated and fitted curves for
S1(w) and Sz(w). Excellent agreement is seen for the first
one, and although the second one shows some discrepan-
cies at long times, the rotational diffusion constant from
both are in good agreement with previously estimated
values (cf. Ref. [21]) from NMR studies that range from
0.12 to 0.25 ps—! in the 190-230 K temperature interval.
The fitted average moments of inertia are within the min-
imum and maximum values along the principal axis for a
free molecule [10] (8.35 and 57.15 amu A2, respectively).

C. Coherent scattering law

The time Fourier transform of the sum of I,(Q,t) and
I:(Q,t) (i.e., the total scattering law) was evaluated from
simulation data. The general shape of such a function is
shown in Fig. 5 for three different @ values. As can be
clearly seen from the graphs, finite-frequency excitations
are clearly seen at the lowest wave vectors, indicating
the presence of relatively well defined collective density
oscillations. To account for the shape of this spectral
component, recourse was again made to a three-pole ap-
proximation, which was supplemented by a Lorentzian
quasielastic contribution, added in a heuristic way. A
similar approach has been followed for other liquids [20],
since no closed-form expression to model the coherent
quasielastic response for a molecular liquid seems to be
available. The expression thus reads

]
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=
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3]
()
0.10 1 =
0.08] Q=1.85A" ]
0.06 ]
0.04 + -
4 4
0.02 -
0.00 - d . . . .
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ho(meV)
FIG. 5. Total coherent scattering function from simula-

tion data, compared with the proposed three-pole plus a
Lorentzian model.
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I'(@)/2
" w? +[0(Q)/2]2
Twi(wi — wi)

* wor(w? — WD)+ [(?

Scoh(Q7 w) =C

+C

o (21)
where wg and w; are the square roots of the reduced sec-
ond and fourth frequency moments of the coherent dy-
namic structure factor, which encompass all the relevant
infcrmation regarding the collective dynamics. Within a
Maxwellian (viscoelastic) approximation, the relaxation
time has the expression

Jroo1
27

T = e
2 wf — w

(22)
whereas the parameter I'(Q) has no clear physical mean-
ing within the viscoelastic ansatz, although we will get
some insight into its behavior. In Fig. 5 we show
Scon(Q,w), obtained from the simulations, compared
with the model proposed in Eq. (21) for three different
Q@ values. Apart from the high-frequency ripple arising
from truncation effects, the model adopted here repro-
duces the spectral shapes in a satisfactory fashion. The
information that results from such an analysis regards
the even-frequency moments of the scattering law for co-
herent motion.

In Fig. 6 we show the calculated zeroth frequency mo-
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FIG. 6. (a) Static structure factor obtained from simula-

tion. Inset: static pair correlation function. (b) Fitted wo
(filled circles) and w, (hollow circles) as a function of Q for
the total coherent scattering function. The line shows the
fitted slope for wo at low-Q values to get an estimate of the
sound velocity.
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ment S(Q) as well as the fitted wp and w; values. The
slope of wg vs Q for wave vectors approaching the hydro-
dynamic regime (below some 0.5 A~!) gives a value for
the isothermal sound velocity of 1000 ms—!, not too far
from a previously reported value (1234 ms~! at 210 K)
[11]. Also, by a comparison of the data shown in Fig. 4
and those depicted in Fig. 3 of Ref. [11], notice that the
rather flat shape of the “dispersion curve” found in the
previous inelastic scattering experiment, which can be
accounted for by the broad peak in S(Q) (a double peak
in the experimental magnitude [10]), is basically repro-
duced by the simulation results. The proposed model is
based on the viscoelastic ansatz for the relaxation time
in which the condition to support collective density os-
cillations is [23]

3w? > Wi, (23)

which is manifested through the observed maxima at
nonzero w values. The condition set in Eq. (23) holds for
wave vectors below 0.43 A1, In Fig. 6 we also show the
calculated S(Q) and (in the inset), the g(r) curves. The
maximum at Q ~ 1.8 A-1 corresponds to a minimum
in the wgy curve, which shows a small dip. Notice that
the ideal gas limit of this frequency moment equals the
second frequency moment of the self-scattering law and
from Fig. 6 it may be seen that such a limit is indeed
approached for momentum transfers above some 2 A1,
On the other hand, an estimate of the co, high-frequency
sound velocity can be readily obtained from the slope at
low wave vectors of w; and gives 1610 ms~1. Again, a
comparison of data above some 1 A~! and the experimen-
tal estimates for the same magnitude shown in Fig. 3a of
Ref. [11] reveals rather similar trends, especially the flat
shape of w; for those wave vectors.

D. Molecular form factor

As stated above, the F3(Q) molecular form factor
strongly depends upon the details of the orientational
correlations between different molecules [cf. Eq. (6)].
In the case of complete randomness of the orientational
degrees of freedom, its calculation is greatly simplified
since

F(Q) = F2a(Q) = [Zbﬁ%] . (24)

However, in our case with highly polar and nonspher-
ical molecules, it is strongly suspected that such an hy-
pothesis does not hold. It is then imperative to make a
more complete calculation based on Eq. (6) for given dis-
tributions of orientation angles. Several models can be
constructed for F3(Q) if information regarding the pref-
erential orientation is available. To our knowledge, such
an exercise only becomes practicable if some oversim-
plifying assumptions such as the existence of long-range
orientational correlations are introduced. A more realis-
tic treatment would rather consider the existence of such
correlations within some correlation length R. around
the central molecule and a completely random distribu-
tion of orientations outside such a sphere. To achieve an
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estimation of the most probable relative orientations be-
tween a pair of molecules, we employed pair correlation
functions from numerical simulations and the results are
briefly commented on in the next subsection.

E. Comparison with experimental data

Once the different motions have been taken into ac-
count, an approximate form for the dynamical structure
J

S(Q’ w) = [Scoh(Q’w) - Sself(Qa w)] FZ(Q) + UO(Q) Sself(Q’w) + vl(Q) % /

+02(Q) %/ dw’sself(Q, U/)Sz(w — w'),

— 00

where S; ;(w) are basically the time Fourier transforms
of the rotational relaxation functions.

As stated above (cf. Sec. IIIA), the comparison be-
tween simulation and experiment required some fine tun-
ing of some parameters, such as the self-diffusion coeffi-
cient [and all the other transport quantities related to
it such as the relaxation time appearing in I,(Q,t); cf.
Eq. (10)] for which the simulation provides rather low
values, as well as some other parameters such as the
F>(Q) structure factor or the width I' of the coherent
quasielastic spectrum entering Eq. (21), for which real-

0.06 . —— . ' T .
* Q=0.7A"
0.04 - -

0.02 -

S(Qe)(meV’)

0.0 2.0 4.0 6.0
ho(meV)
Comparison between experimental neutron spec-

tra (circles) and simulation results (solid line), for the wave
vectors given in the inset.

FIG. 7.
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factor can be derived. The strongest approximation in
the expression that follows concerns the consideration
of different movements as statistically independent since
closed form expressions would be prohibitively involved
otherwise. The quantity to be compared with experi-
ment is therefore computed after introduction of all the
required ingredients in Eq. (2) and a subsequent Fourier
transform. The resulting total structure factor then reads

dw’ Seerf(Q, w') S1(w — ')

—0o0

(25)

I
istic models are difficult to build. These were taken as
the only adjustable parameters against the experimen-
tal, constant-@ spectra and the agreement between sim-
ulation and experiment can be gauged from Fig. 7. The
most interesting results regarding the fitted values for the
molecular structure factor F3(Q) are shown in Fig. 8. As
can be seen, the estimated structure factor is not far from
that which corresponds to the case of uncorrelated molec-
ular orientations up to momentum transfers of @ ~ 1.5
A~ whereas it approaches the curve calculated assum-
ing a strong correlation of orientations from this value on.
Such a curve was calculated from molecular geometries
derived from the analysis of the partial go(r) pair corre-
lation functions calculated by means of Monte Carlo sim-
ulations. In fact, from maxima in gog(r) it was inferred
that three different relative orientations were compatible
with the simulated data and the model F>(Q) curve de-
picted in the figure corresponds to an average over the
three configurations.

We can interpret this result on the basis that for low
wave vectors we are exploring large regions in space, so
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FIG. 8. Compared molecular form factors. The full line

is the uncorrelated case, while dashed line indicates the cor-
related case obtained from three different configurations. Full
circles indicate the molecular form factor fitted from the ex-
perimental data.
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FIG.9. Estimated width of the coherent quasielastic com-
ponent to the spectra (circles). The solid line represents an
approximation in terms of Eq. (26) using a value of 0.3
A2 ps™?! for the Dg Enskog self-diffusion coefficient and 3.5
A for the o, hard sphere diameter.

the uncorrelated hypothesis is right through an average
of a large number of configurations, whereas for larger
Q’s we are exploring the vicinity of a molecule, so the
proposed pairwise configurations holds. An estimate for
a lower bound to the correlation length could thus be
carried from R, = 27/Qp, where Q; is taken as that cor-
responding to the change of behavior of F5(Q), Qp = 1.5
A-1, which gives some 4.2 A for R.. Such a value is to
be compared with some other estimates derived from the
extent in real space where the experimental g(r) shows
some structure [10] that provides a value of approxi-
mately 10 A, which should be taken as an absolute upper
bound for this quantity.

It is also interesting to delve into the information pro-
vided by the wave vector dependence of the coherent
quasielastic widths I'(Q). According to some kinetic the-
ory results [24], such a quantity should vary as

DpQ?*/5(Q)
—Jo(Qos) + 242(Qos)’

where Dg = kT /M¢&g is the Enskog self-diffusion coef-
ficient, which is expressible in terms of the temperature,
molecular mass, drag factor {g and o,, a hard-sphere
diameter. A comparison between the values of I'(Q) de-
rived from the interplay between simulation and experi-
ment and those calculated from the equation given above
using reasonable values for the two relevant parameters
(i.e., Dg = 3 x 107° m? s7* and o,= 3.5 A) is shown
in Fig. 9. Notice that both the magnitude and shape of
T'(Q) are reproduced if the large statistical error in the
data are accounted for. The value estimated for Dy is
about 30% smaller than the actual self-diffusion coeffi-
cient, which is easily understood from results on hard
sphere systems [25], which evidence a pronounced de-
crease in the quantity Dg/D for high-density fluids.

r(Q) = ; (26)
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IV. DISCUSSION AND CONCLUSIONS

The present paper reports a quantitative attempt to
analyze the dynamic correlations of a dense dipolar lig-
uid in terms of well established semiphenomenological
models to account for the single-particle and collective
dynamics. In particular, the I,(Q,t) self-scattering law
was successfully described through a three-pole model,
which showed that the validity of the Fickian diffusion
regime is confined below Q ~ 0.5 A~!. The dynamics
of molecular rotations was well described by a two-state
model due to Larsson and Bergstedt [22] through the
introduction of two characteristic times, corresponding
to free rotational and diffusional regimes. A consistent
value for the rotational diffusion constant was obtained
independently from the first- and second-order relaxation
functions, in good agreement with NMR data. On the
other hand, some of the parameters derived from com-
parison between simulation and experiment, such as the
coherent quasielastic widths, can be accounted for using
realistic values for the relevant parameters, thus lending
further support to the validity of the procedure followed
here to analyze the experimental and computer simula-
tion data.

From a comparison between simulation and experi-
ment an estimate of the extent of strong intermolecular
correlations have been obtained. The characteristic dis-
tance R, ~ 4.2 A indicates that for length scales covering
the first coordination shell the orientational correlations
are remarkably strong and these die away in a rather
smooth fashion up to some 10 A. With the present data
at hand, it becomes difficult to assess whether the de-
cay of orientational correlations follow any prespecified
form [i.e., proportional to exp (—72/R2) or any other sim-
ple form] and it is not even clear that something signifi-
cant can be gained from experimental diffraction data of
higher accuracy [10]. However, by comparison with other
well studied cases [15] it seems clear that the most sig-
nificant difference between this liquid and others formed
by particles interacting mainly via dispersion forces con-
cerns the clear change of behavior of the F5(Q) structure
factors at wave vectors not far from those characteristic
of the first peak in 5(Q).

A comparison between the present results and some
recent reports stating the existence of long-ranged ori-
entational order in dipolar fluids [9] (i.e., a ferroelec-
tric nematic phase) seems in order. The thermodynamic
state of the system here explored corresponds, using the
same reduced units as employed by Groh and Dietrich
[9], to that of a fluid composed of dipoles of aspect ratio
k = 6.87 and dipole moment m* = 1.13 at a reduced tem-
perature T = 0.68 and density p* = 0.7 [27]. An inspec-
tion of the phase diagrams given in Ref. [9] for systems
not too far from that considered here (m* = 1,k = o0)
places the state point analyzed here well within the in-
stability region (i.e., according to the calculation, the
isotropic liquid would be stable for temperatures about
1.7 times the actual one). On the other hand, entrance
into the ferroelectric phase would require an increase in
density of some 1.3 times the actual one for the liquid
with a concomitant increase in temperature of some 1.2
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times. Consideration of the compressibility and volume
expansion of the liquid [28] shows that such a state could
possibly be achieved by an increase in temperature up
to some 300 K and an applied pressure of the order of 3
kbar.

From the simulation data, the hydrodynamic limits
of the dielectric functions €'(w),e” (w) were calculated as
Fourier-Laplace transforms of the autocorrelation func-
tions for the fluctuations of the total dipole moment. The
calculated curves from the model of rigid dipoles used for
the present simulation show a broad maximum in €’ (w)
centered at approximately 4 meV, which is somewhat
below the maximum of the experimental generalized fre-
quency distribution (see, for instance, Fig. 3a of Ref. [12]
for plots of this quantity) and a change in sign of €'(w)
appearing at some 4.5 meV. Notice that a simple esti-
mate of the frequency of this dipolar plasmon excitation
from [1]

W — 4w N p?
P VI*ey

(27)

for liquid sulphur dioxide under the present conditions
gives 6.5 meV, some seven times smaller than estimates
for liquid water, understandable from the considerably
smaller moment of inertia (I*) and higher dipole density
(N/V) and dipole moment (u) of the former liquid. From
the present data regarding the molecular dynamics, we
can reassess the condition of existence of “dipolaron” os-
cillations. This can be written in a simplified form as

(7]
€(0)e(c0) > wir,7p /4, (28)

where €(0,00) are the zero- and infinite-frequency per-
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mitivities (taken as 17.6 and 1.99, respectively [26]), w,
is the free (inertial) reorientational angular frequency,
w? = 2kgT/I, with I being the average moment of in-
ertia, 7p is the rotational diffusion time (both values
obtained in Sec. IIIB), and 7, = 7p[2¢(0) + 1]/3¢(0).
The left-hand side of Eq. (28) thus gives 35.02 and the
right-hand side 6.25, so the stated condition regarding
the existence of the oscillation holds. Therefore, such
a collective mode should, if it exists, be visible in the
high-frequency dielectric response €(Q,w) measured by
optical means (i.e., reflectivity at normal incidence) as a
well defined peak located not far from some 4-6 meV.

Finally, it is worth emphasizing the fact that the most
remarkable anomaly regarding the dynamics of this lig-
uid, apart from the relatively large value for the molec-
ular mass derived from analysis of I,(Q,t), concerns
its reorientational movements, which substantially de-
part from simple exponential relaxation. Whether this
can be interpreted as a clear manifestation of strong
non-Markovian effects introduced by dielectric friction as
claimed by some [29] or is just a simple consequence of
geometrical constraints can be decided only after future
experiments evidencing the presence of long-time tails in
the orientational relaxation functions.
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